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UNIT V 

PARALLEL PROGRAM DEVELOPMENT 

CASE STUDIES: N-BODY SOLVER, TREE SEARCH (OPENMP, MPI) 

 

1. N-BODY SOLVER 

   Solving non-trivial problems. 

 The n-body problem. 

 The traveling salesman problem. 

 Applying Foster’s methodology. 

 Starting from scratch on algorithms that have no serial analog. 

Definition: 

 Find the positions and velocities of a collection of interacting particles over a 

period of time. 

 An n-body solver is a program that finds the solution to an n-body problem by 

simulating the behavior of the particles. 

 

Simulating motion of planets: 

 Determine the positions and velocities:  

 Newton’s second law of motion. 

                      Newton’s law of universal gravitation. 
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* To find the total force on any particle by adding the forces due to all the particles. If 

are n particles are numbered 0,1,2,…n-1,then total force on particle q is given by 

 

 

 Newton’s second law of motion states that the force on an object is given by 
its mass multiplied by its acceleration so if it the acceleration of particle q is  

 

 

 To find the positions and velocities at the times 
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->Reduced algorithm for n-body forces. 

 

Euler’s Method: 

For each particle ,we need to know the values of  

Its mass, 

Its Position, 

Its Velocity 

Its acceleration and total force acting on it. 
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2.Parallelizing the basic solver using openmp: 

Pseudocode for the serial program : 

For each timestep 

{ 

If (timestep output) 

print positions and velocities of particles For each particle q 

Compute total force on q 

Compute position and velocity of q 

} 

The two inner loops are both iterating over particles. Parallelizing the two inner loops 

will map task/particles to cores, 

For each timestep 

{ 

If (timestep output) 

print positions and velocities of particles 

 #pragma omp parallel for 

For each particle q compute total force on q 

Compute position and velocity of q} 

->In the basic version of first loop  

#pragma omp parallel for 

For each particle q 
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This will have the desired effect on the two for each particle loops the same team of 

threads will be used in both loops and for every iteration of the outer loop. Every thread 

will print all the positions and velocities and want only one threads to do the I/O. Adding 

the single directives gives the following pseudo code 

# pragma omp parallel  

For each timestep 

{  

If(timestep output) 

{ 

 #pragma omp single 

Print position and velocities of particles 

} 

#pragma omp for  

For each particle q 

Compute total force on q;  

#pragma omp for 

For each particle q 

Compute position and velocity of q; 

} 

Then, possible race conditions introduced in the transition from one statement to 

another. Thread () completes the first for each particle loop before thread1, and it then 

starts updating the positions and velocities of its assigned particles in the second for each 

particle loop.Thread1 to use an updated position in the first for each particle loop.  

 If thread finishes first inner loop before thread1, it will block until thread1 finish the 
first inner loop and it won’t start the second inner loop until all the threads have 
finished the first. This will also prevent the possibility that a thread might rush ahead 
and print position and velocities before they‘ve all been updated by second loop. 
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There is also an implicit barrier after the single directive although in this program the 

barrier isn’t necessary. Since the output statement won’t update  any memory locations. 

If its ok for some threads to go ahead and start executing the next iteration before 

output has been completed. Furthermore the first inner for loop in the next iteration 

only updates the forces array so it can’t cause a thread executing the output statement 

to print incorrect values and because of the barrier at the end of the first inner loop, no 

thread can race ahead and start updating positions and velocities in the second inner 

loop before the output has been completed. Thus could modify the single directive with 

a no wait clause.  

 If the OpenMP implementation support it this simply eliminates the implied barrier 
that will prevent any one thread from getting more than a few statement ahead of 
any other. 

Finally, 

May want to add a schedule clause to each of the for directives in order to insure that the 

iterations have a block partition 

#pragma omp for schedule (static,n/thread_count) 

3. Reduced solver using Openmp: 

The reduced solver has an additional inner loop the initialization of the forces array to 

0.If try to use the same parallelization for the reduced solver, should also parallelize this 

loop with a for directive. 

Parallelize the reduced solver with the following pseudocode 

#pragma omp parallel  

 For each timestep 

{  

If(timestep output) 

{ 

#pragma omp single 

Print positions and velocities of particles; 

} 
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#pragma omp for 

For each particle q 

Forces[q]= 0.0; 

#pragma omp for 

For each particle q 

Compute total force on q  

#pragma omp for 

For each particle q 

Compute position and velocity of q 

} 

Parallelization of the initialization of the forces should be fine as there’s no dependence 

among the iteration. The updating of the positions and velocities is the same in both the 

basic and reduced solvers. 

How does parallelization affect the correctness of the loop for computing the 

forces?The loop has the following form: there are three ways of solutions  

Solution 1: 

#pragma omp for 

For each particle{ 

Force_qk[X]= force_qk[Y]=0 

For each particle k >q 

{ 

x-diff=pos[q][x]-pos[k][x]; 

y-diff=pos[q][y]-pos[k][y]; 

    dist= sqrt(x-diff*X-iff+y,diff*y_diff);  

    dist_cubed= dist*dist*dist; 

   force_qk[X]= G*masses [q]*masses[k]/dist_cubed*x_diff; 

 force_qk[Y]= G*masses [q]*masses[k]/dist_cubed*y_diff; 
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forces[q][X] +=force_qk[X]; 

forces[q][Y] +=force_qk[Y]; forces[k][X]-=force_qk[X]; 

forces[k][Y]-=force_qk[Y];}} 

 

 the variables pos, masses, and forces and variables are only used in a single 
iteration and hence can be private a thread may update elements of the forces 
array rather than those corresponding to its assigned particles. For example, 
suppose have two threads and four particles and using a block partition of the 
particles. 

 

 Then the total force on particle 3 is given by 

F3= -f03-f13-f23 

Thread 0 will compute f03 and f13 while 1 will compute f23 .Thus updates to forces[3] do 
create a race condition 

An oblivious solution to this problem is to use a critical directive to limit access to the 

elements of the forces array. The simplest is put a critical directive before all the 

updates to forces. 

#pragma omp critical 

{  

forces[q][X]+=force_qk[X]; 

forces[q][Y] +=force_qk[Y]; 

forces[k][X]-=force_qk[X]; 

forces[k][Y]-=force_qk[Y]; 

Here, only one force can be updated at a time and contension for access to the critical 

section is actually likely to seriously degrade the performance of the program. 

*Master thread: 

It will create a shared array of locks ,one for each particle and when we update an 

element of the forces arrays, we first set the lock corresponding to that particle 
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4. Parallelizing the basic solver using MPI: 

 Choices with respect to the data structures: 

 Each process stores the entire global array of particle masses. 

 Each process only uses a single n-element array for the positions. 

 Each process uses a pointer loc_pos that refers to the start of its block 

of pos.  

 So on process 0 local_pos = pos; on process 1 local_pos = pos + loc_n; 

etc.  

 Used with MPI collective communication 

MPI_Allgather (loc_pos,loc_n,Vect_mpi_t,pos,loc_n,vect_mpi_t,comm); 

Pseudo-code for the MPI version of the basic n-body solver: 
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4. Parallelizing the Reduced solver using MPI: 

Communication In A Possible MPI Implementation of the N-Body Solver 

(for a reduced solver): 

 

*Before computing the forces each process will need to gather a submit of the 

positions and after the computation of the forces each process will need to scatter 

some of the individual forces it has computed and add the forces it receives. 

 

A Ring of Processes: 
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Ring Pass of Positions: 

The communication in a ring pass takes place in phases and during each phases 

each process sends the data to its “lower ranked” neighbor and receives data from 

its higher-ranked neighbor. 

  

*During the Next phase each process will forward the positions it received in the 

first phase. This process continuous through comm _sz-1 phase until each process 

has received has positions of all the particles. 

*For example, if we have six particles ,then the reduced algorithm will compute the 

force on particle 3 as 

F3= -f03-f13-f23+ f34+ f35 

 

Pseudo-code for the MPI implementation of the reduced n-body solver: 
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First Phase Computations for Reduced Algorithm with Block Partition: 

 

5.Serial n-body solver: 
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2.TREE SEARCH 

 

 Search tree: 
 

 

6.RECURSIVE DEPTH FIRST SEARCH WITH EXAMPLE: 

Using depth first search can systematically visit each node of the tree that could possibly 

lead to a least cost solution. The simplest form uses recursion. 

The algorithm makes use of several global variables  

N: total number of cities in the program 
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Diagraph: a data structure representing the input diagraph 

Hometown: a data structure representing vertex or city 0 the salesperson’ hometown. 

Best tour: a data structure representing the best tour so far 

Void depth_first_search(tour-t tour) 
{ 
 City_t City; 
if(city_count(tour)==n) 
{  
if(best_tour(tour); 

} 
else 
 { 
for each neighboring city 
if(feasible(tour,city)) 

{  

add_city(tour,city) 
Depth_first_search(tour); 
Remove_last_city(tour,city); 

} 
} 

} /*Depth-first- search*/ 
 

 

The function city_count examines the partial tour tour to see if there are n cities on 

the partial tour. If there are know that simply need to return to the hometown to 

complete the tour and can check to see if the complete tour has a lower cost than the 

current best tour by calling Best-tour. If it does can replace the current best tour with 

this tour by calling the function update_best_Tour. 

 
 
 
 
 
 
 
Nonrecursive depth first search with example. 
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Problem with recursion: Function calls are expensive, recursion can be slow. 
At any given instant of time only the current tree node is accessible. This is a 
problem while parallelizing tree search by dividing tree nodes among the 
threads or processes. 
 
Basic Idea: Push necessary data on our own stack before branching deeper 
into the tree, and when we need to go back up the tree—either because 
we’ve reached a leaf or because we’ve found a node that can’t lead to a 
better solution—we can pop the stack 
 
Non Recursive depth 

for (city = n-1; city >= 1; city--) 

{ 

Push(stack, city); 

} 

while (!Empty(stack)) 

{ 

city = Pop(stack); 

if (city == NO_CITY) // End of child list, back up 

{ 

Remove_last_city(curr_tour); 

} 

else 

{ 

Add_city(curr_tour, city); 

if (City_count(curr_tour) == n) 

{ 

if (Best_tour(curr tour)) 

Update_best_tour(curr_tour); 

Remove_last_city(curr_tour); 

} 

else 

{ 

Push(stack, NO_CITY); 

for (nbr = n-1; nbr >= 1; nbr--) 

{ 

if (Feasible(curr_tour, nbr)) 

{ 

Push(stack, nbr); 

} 

} 

} 

} / if Feasible / 

} / while !Empty / 
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 first solution to TSP: (Version 1) 
 

 Stack is used to avoid recursion. 

 The main control structure is while loop and the loop will be terminated 

when stack is empty. 

 As long as the search needs to continue, make sure the stack is nonempty, 

and, in the first two lines, each of the non-hometown cities are added 

 NO_CITY: This constant is used so that we can tell when we’ve visited all of 

the children of a tree node; 

 Cities are numbered 0, 1, . . . , n – 1 

 A tour contains number of cities, the cities in the tour, and the cost of it 

 number of cities is city_count (tour) 

 Initially, tour contains the first city 0 and cost 0 

 Best_tour(tour) checks if this is the best tour so far 

 Update_best_tour(tour) updates the best tour 

 feasible(tour, city ) checks if city has been visited, and if not, if it can be 

added to tour so that cost upto city < cost( best tour ) 

 Add_city (tour, city ) adds city to tour; city must be feasible 

 remove_last_city(tour, city ) removes last city from tour 

 push(stack,city) pushes city onto stack 

 pop(stack) pops city from stack 

 

7.parallelizing tree search using OpenMP. 
 When a single thread executes some code in the Pthreads version, the test 

if (my rank == whatever) 

 can be replaced by the OpenMP directive 

 # pragma omp single 
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 This will insure that the following structured block of code will be executed 

by one thread in the team, and the other threads in the team will wait in an 

implicit barrier at the end of the block until the executing thread is finished.  

 

 When whatever is 0 (as it is in each test in the Pthreads program), the test 

can also be replaced by the OpenMP directive  

 

# pragma omp master 

 

 This will insure that thread 0 executes the following structured block of 

code. However, the master directive doesn’t put an implicit barrier at the 

end of the block, so it may be necessary to also add a barrier directive after 

a structured block that has been modified by a master directive. 

 

  The Pthreads mutex that protects the best tour can be replaced by a single 

critical directive placed either inside the Update best tour function or 

immediately before the call to Update best tour. This is the only potential 

source of a race condition after the distribution of the initial tours, so the 

simple critical directive won’t cause a thread to block unnecessarily. 

 
  OpenMP provides a lock object omp_lock_t and the following functions for 

acquiring and relinquishing the lock, respectively: 

 

 It also provides the function 

 

 To emulate the functionality of the Pthreads function calls 
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 A thread that has entered the condition wait by calling 

 Another thread has split its stack and created work for the waiting thread. 

 All of the threads have run out of work. 

 The simplest solution to emulating a condition wait in OpenMP is to use 

busy-waiting. 

 

 If awakened_thread has the value of some thread’s rank, that thread will 

exit immediately from the while, but there may be no work available. 

Similarly, if work_remains is initialized to 0, all the threads 

will exit the while loop immediately and quit. 

 Complete emulated condition wait should look something like this: 

 When a thread splits its stack, it can choose the thread to awaken by 

dequeuing the queue of waiting threads: 

 

 The awakened thread needs to reset awakened thread to -1 before it 
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returns from its call to the Terminated function. 

 

8.parallelizing tree search using MPI Static Partitioning: 
 

Implementation of Tree search using MPI with static portioning: 

 The principal differences lie in 
 partitioning the tree, 
 checking and updating the best tour, and 
 after the search has terminated, making sure that process 0 has a 

copy of      the best tour for output. 

 
 
Syntax of MPI Scatter 

 

 

 
 

  Process root sends sendcount objects of type sendtype from 
sendbuf to each process in comm. Each process in comm receives 
recvcount objects of type recvtype into recvbuf. Most of the time, 
sendtype and recvtype are the same and sendcount and recvcount 
are also the same. In any case, it’s clear that the root process must 
send the same number of objects to each process. 

 MPI_Gatherv generalizes MPI Gather 

 MPI_Send to send it to all the other processes: 
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 Destination processes can periodically check for the arrival of 
new best tour costs. We can’t use MPI_Recv to check for 
messages since it’s blocking; if a process calls 

 

 

the process will block until a matching message arrives. 
 The process that finds a new best cost use MPI Send to send it to all 

the other processes: 
for (dest = 0; dest < comm sz; 

dest++) if (dest != my rank) 
MPI_Send(&new best cost, 1, MPI_INT, dest, 
NEW_COST_TAG,comm); 

 
 The destination processes can periodically check for the arrival of new 

best tour 
 costs. We can’t use MPI Recv to check for messages since it’s 

blocking; if a process calls 

MPI_Recv(&received cost, 1, MPI_INT, MPI_ANY_SOURCE, NEW_COST 
_TAG, comm, &status); 

 the process will block until a matching message arrives 
 MPI provides a function that only checks to see if a message is 

available; it doesn’t actually try to receive a message. It’s called 
MPI_Iprobe, and its syntax is 
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 To check for a message with a new cost from any process, we can call 
MPI_Iprobe(MPI_ANY_SOURCE, NEW_COST_TAG,comm.,&msg_avail,
 comm,&msg_avail, &status); 

 If msg avail is true, then we can receive the new cost with a call to MPI_Recv: 

MPI_Recv(&received_cost, 1, MPI_INT, status.MPI_SOURCE, NEW_COST_ TAG, 
comm, MPI_STATUS_IGNORE); 

 Modes and Buffered Sends 
o MPI provides four modes for sends: standard, synchronous, 

ready, and buffered 
 Each mode has a different function: MPI_Send, MPI_Ssend, 

MPI_Rsend, and MPI_Bsend, respectively, but the argument lists are 

identical to the argument lists for MPI_Send: 

 The buffer that’s used by MPI_Bsend must be turned over to the MPI 
implementation with a call to MPI_Buffer_attach: 
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 Printing the best tour: 
o After all the processes have completed their searches,they can 

all call MPI_ Allreduce and the process with the global best 
tour can then send it to process 0 for output. 

 

o When the call to MPI_Allreduce returns, we have two 
alternatives: . If process 0 already has the best tour, we simply 
return. . Otherwise, the process owning the best tour sends it 
to process 0. 

 
9.parallelizing tree search using MPI Dynamic Partitioning: 

 
Implementation of Tree search using MPI with Dynamic Partioning: 

 When a thread ran out of work—that is, its stack was empty—it went into 

a condition wait (Pthreads) or a busy-wait (OpenMP) until it either 

received additional work or it was notified that there was no more work. 

In the first case, it returned to searching for a best tour. In the second 

case, it quit. A thread that had at least two records on its stack would give 

half of its stack to one of the waiting threads. 

  When a process enters the Terminated function, it can check to see if 

there’s a request for work from some other process. If there is, and the 

process that has just entered Terminated has work, it can send part of its 

stack to the requesting process. If there is a request, and the process has 

no work available, it can send a rejection. 
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  Before entering the apparently infinite while loop (Line 13), we set the 

variable work_request_sent to false (Line 12). As its name suggests, this 

variable tells us whether we’ve sent a request for work to another process; 

if we have, we know that we should wait for work or a message saying “no 

work available” from that process before sending out a request to another 

process. The while(1) loop is the distributed-memory version of the 

OpenMP busy-wait loop.We are essentially waiting until we either receive 

work from another process or we receive word that the search has been 

completed. 

 When we enter the while(1) loop, we deal with any outstanding messages 

in Line 14 

 After clearing out outstanding messages, we iterate through the possibilities: 

 . The search has been completed, in which case we quit (Lines 15–16). 

 . We don’t have an outstanding request for work, so we choose a process 

and send it a request (Lines 17–19). We’ll take a closer look at the problem 

of which process should be sent a request shortly. 

 . We do have an outstanding request for work (Lines 21–25). So we check 

whether the request has been fulfilled or rejected. If it has been fulfilled, 

we receive the new work and return to searching. If we received a 

rejection, we set work_request _sent to false and continue in the loop. If 

the request was neither fulfilled nor rejected, we also continue in the 

while(1) loop. 
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 Pseudocode for Terminated function 

 My_avail_tour _count : The function My_avail_tour_count can simply 

return the size of the process’ stack.It can also make use of a “cutoff 

length.” When a partial tour has already visited most of the cities, there will 

be very little work associated with the subtree rooted at the partial tour. 

Since sending a partial tour is likely to be a relatively expensive operation, it 

may make sense to only send partial tours with fewer than some cutoff 

number of edges. 

  Fulfill_ request: If a process has enough work so that it can usefully split 

its stack, it calls Fulfill_request (Line 2). Fulfill_request uses MPI Iprobe to 

check for a request for work from another process. If there is a request, it 

receives it, splits its stack, and sends work to the requesting process. If 
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there isn’t a request for work, the process just returns. 

 Splitting the stack: 

  A Split_ stack function is called by Fulfill_request. It uses the same basic 

algorithm as the Pthreads and OpenMP functions, that is, alternate partial 

tours with fewer than split_cutoff cities are collected for sending to the 

process that has requested work. However, in the shared-memory 

programs, we simply copy the tours (which are pointers) from the original 

stack to a new stack. 

 MPI provides a function, MPI_Pack, for packing data into a buffer of 

contiguous memory. It also provides a function, MPI_Unpack, for 

unpacking data from a buffer of contiguous memory 

 Syntax of MPI_pack: 
  

 
 

 Syntax of MPI_Unpack 

 

 MPI_Pack takes the data in data_to_be_packed and packs it into contig_buf 

 MPI_Unpack reverses the process. 
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10.Explain about the static and dynamic parallelization of tree search using pthreads 

Pseudo-code for a Pthreads implementation of a statically parallelized solution to TSP: 

 

Dynamic Parallelization of Tree Search Using Pthreads: 

 Termination issues. 

 Code executed by a thread before it splits: 

 It checks that it has at least two tours in its stack. 

 It checks that there are threads waiting. 

 It checks whether the new_stack variable is NULL. 
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