
Derived
Types

Union
Type

Array
Type

Function
Type

Pointer
Type

Structure
Type

Unit V - Structure : LEARNING PLAN

5.0 Introduction to structures–

C Data Types:

Primary data types

Derived data types

User-defined data types

Array – Collection of one or more related variables of similar data type grouped under a

single name

Structure – Collection of one or more related variables of different data types, grouped
under a single name

Need of structures

In a Library, each book is an object, and its characteristics like title, author, no of pages, price
are grouped and represented by one record.

The characteristics are different types and grouped under a aggregate variable of different
types.

A record is group of fields and each field represents one characteristic. In C, a record is
implemented with a derived data type called structure. The characteristics of record are
called the members of the structure.

float

integer

Array of 40
characters

Array of 50 characters

integer book_id

2 bytes

2 bytes

 title

 author

50
bytes

40

 pages

 price

bytes

 4 bytes

STRUCTURE- BOOK

struct book {

int book_id ;

char title[50] ;
Structure
tag

char author[40] ;
int pages ;

float price ;

};

Memory occupied by a Structure
variable

Book-3

BookID: 1213

Title : C By Example

Author : Greg Perry
Pages : 498

Price : Rs. 305.00

Book-2

BookID: 1212

Title : The ANSI C Progg.

Author : Dennis Ritchie

Pages : 214

Price : Rs. 125.00

Book-1

BookID: 1211

Title : C Primer Plus

Author : Stephen Prata

Pages : 984

Price : Rs. 585.00

book

price

pages

author

title

bookid

• A Structure is defined to be a collection of different data items, that

are stored under a common name.

• A structure is same as that of records. It stores related information

about an entity. Structure is basically a user defined data type that

can store related information (even of different data types) together.

Declaration of structures

• A structure is declared using the keyword struct followed by a

structure name. All the variables of the structures are declared within

the structure. A structure type is defined by using the given syntax.

• By declaring a stucture type By declaring a structure variable

struct struct-name { struct stru-name Sv1,Sv2,Sv3;

data_type var-name; (or)

data_type var-name; struct stru-name {

…}; data_type var-name;

data_type var-name;

} sv1, sv2 , sv3;

Example :
struct student {

int r_no;

char name[20];
char course[20];
float fees; };

The structure definition does not allocates any memory. It just gives a
template that conveys to the C compiler how the structure is laid out
in memory and gives details of the member names. Memory is
allocated for the structure when we declare a variable of the structure.
For ex., we can define a variable of student by writing as :

struct student stud1;

Here, struct student is a data type and stud1 is a variable. Look at another
way of declaring variables. In the following syntax, the variables are
declared at the time of structure declaration.

struct student{

int r_no;

char name[20]; char course[20]; float fees;

} stud1, stud2;

In this declaration we declare two variables stud1 and stud2 of the
structure student. So if you want to declare more than one variable of the
structure, then separate the variables using a comma. When we declare
variables of the structure, separate memory is allocated for each variable.
This is shown in Fig.

last but not the least, structure member names and names of the structure
follow the same rules as laid down for the names of ordinary variables.
However, care should be taken to ensure that the name of structure and the
name of a structure member should not be the same. Moreover, structure
name and its variable name should also be different.

Note: Structure type and variable declaration of a structure can be either
local or global depending on their placement in the code.

Type def declarations

The typedef (derived from type definition) keyword enables the programmer to create a

new data type name by using an existing data type. By using typedef, no new data is created,

rather an alternate name is given to a known data type. The general syntax of using the

typedef keyword is given as:

typedef existing_data_type new_data_type;

Note that typedef statement does not occupy any memory; it simply defines a new type. For
example, if we write

typedef int INTEGER;

then INTEGER is the new name of data type int. To declare variables using the new data type
name, precede the variable name with the data

type name (new). Therefore, to define an integer variable, we may now write

INTEGER num=5;

When we precede a struct name with typedef keyword, then the struct becomes a

new type. It is used to make the construct shorter with more meaningful names for

types already defined by C or for types that you have declared. With a typedef

declaration, becomes a synonym for the type.

For example, writing

typedef struct student{

int r_no;

char name[20];

char course[20];

float fees;};

Now that you have preceded the structure‘s name with the keyword typedef, the

student becomes a new data type. Therefore, now you can straight away declare

variables of this new data type as you declare variables of type int, float, char,

double, etc. to declare a variable of structure student you will just write,

student stud1;

Note that we have not written struct student stud1.

NOTE: Do not forget to place a semicolon after the declaration of structures and

unions.

Accessing the members of a structure

Each member of a structure can be used just like a normal variable, but its

name will be a bit longer. A structure member variable is generally

accessed using a ‘.’ (dot operator).

The syntax of accessing a structure a member of a structure is:

struct_var.member_name

stud1.r_no

The dot operator is used to select a particular member of the structure. For
example, to assign values to the individual data members of the structure
variable studl, we may write

stud1.r_no = 01;

stud1.name = "Rahul";

stud1.course = "BCA";

stud1.fees = 45000;

To input values for data members of the structure variable stud1, we may write

scanf("%d", &stud1.r_no);

scanf("%s", stud1.name);

Similarly, to print the values of structure variable stud1, we may write

printf("%s", stud1.course);

printf("%f", stud1.fees);

Memory is allocated only when we declare the variables of the structure. In
other words, the memory is allocated only when we instantiate the structure.
In the absence of any variable, structure definition is just a template that will
be used to reserve memory when a variable of type struct is declared.

Once the variables of a structure are defined, we can perform a few operations
on them. For example, we can use the assignment operator (=) to assign the
values of one variable to another.

NOTE: Of all the operators –>, . , (), and [] have the highest priority. This is
evident from the following statement

stud1.fees++ will be interpreted as (stud1.fees)++.

membership operator

Initialization of structures

• Initializing a structure means assigning some constants to the members of the

structure.

• When the user does not explicitly initializes the structure then C automatically
does that. For int and float members, the values are initialized to zero and char
and string members are initialized to the ‗\0‘ by default.

• The initializers are enclosed in braces and are separated by commas. Note that
initializers match their corresponding types in the structure definition.

• The general syntax to initialize a structure variable is given as follows.

struct struct_name

{ data_type member_name1;

data_type member_name2;

.......................................

}struct_var = {constant1, constant2, constant 3,...};

OR

struct struct_name

{ data_type member_name1;

data_type member_name2;

.......................................

};

struct struct_name struct_var = {constant1, constant2, ….};

For example, we can initialize a student structure by writing,
struct student
{int r_no;
char name[20]; char course[20]; float fees;
}stud1 = {01, "Rahul", "BCA", 45000};

Or, by writing,
struct student stud1 = {01, "Rahul", "BCA", 45000};
Figure illustrates how the values will be assigned to individual fields of the structure.

Assigning values to structure elements

When all the members of a structure are not initialized, it is called partial
initialization. In case of partial initialization, first few members of the structure are
initialized and those that are uninitialized are assigned default values

To Initialize or assign of structure variable while declaration
struct student stud1= {01, ―Rahul‖, ―BCA‖, 45000} ;

To initialize or assign value to the individual data members of the
structure variable Rahul, we may write,
stud1.r_no = 01;
strcpy(stud1.name, ―Rahul‖);
stud1.course = ―BCA‖;
stud1.fees = 45000;

Reading values to members at runtime:

struct student stud3;
printf(―\nEnter the roll no‖);
scanf(―%d‖,&stud3.r_no);
printf(―\nEnter the name‖);
scanf(―%s‖, stud3.name);
printf(―\nEnter the course‖);
scanf(―%s‖, stud3.course);
printf(―\nEnter the fees‖);
scanf(―%d‖,&stud3.fees);

We can initialize / assign a structure to another structure of the same
type. For ex, if we have two structure variables stu1 and stud2 of type
struct student given as

struct student stud1 = {01, "Rahul", "BCA", 45000};
struct student stud2;
Then to assign one structure variable to another we will write,
stud2 = stud1;

Example Program 1: Write a program using structures to read
and display the information about a student

#include <stdio.h>

#include <string.h>

struct employee {

int empid;

char name[35];

int age;

float salary;};

int main() {

struct employee emp1 ;

printf("Enter the details of employee 1 : ");

scanf("%d %s %d %f" , &emp1.empid, emp1.name, &emp1.age, &emp1.salary);

printf("Emp ID:%d\nName:%s\n Age:%d\n Salary:%f",emp1.empid,
emp1.name, emp1.age,emp1.salary);}

Output :

Example program 2: Write a program using structures to read
student 3 marks and display the total and average of the
student.

#include<stdio.h>

#include<conio.h>

struct stud

{

int regno;

char name[10];

int m1;

int m2;

int m3;

};

struct stud s;

void main() {

float tot,avg;

printf("\nEnter the student regno,name,m1,m2,m3:");

scanf("%d%s%d%d%d",&s.regno,&s.name,&s.m1,&s.m2,&s.m3);

tot=s.m1+s.m2+s.m3;

avg=tot/3;

printf("\nThe student Details are:");

printf("\n%d\t%s\t%f\t%f",s.regno,s.name,tot,avg);

}

Output :

Enter the student regno,name,m1,m2,m3:100

aaa

87

98

78

The student Details are:

100 aaa 263.000000 87.666664

&emp2.age,

Initialization of Structure members
individually

#include <stdio.h>

#include <string.h>

struct employee {

int empid;

char name[35];

int age;

float salary;

};

int main() {

struct employee emp1,emp2 ;

struct employee emp3 = { 1213 , "S.Murali" , 31 , 32000.00 } ;

emp1.empid=1211;

strcpy(emp1.name, "K.Ravi");

emp1.age = 27;

emp1.salary=30000.00;

printf("Enter the details of employee 2");

scanf("%d %s %d %f" , &emp2.empid, emp2.name,

&emp2.salary);

if(emp1.age > emp2.age)

printf("Employee1 is senior than Employee2\n");

else

printf("Employee1 is junior than Employee2\n");

printf("Emp ID:%d\n Name:%s\nAge:%d\n Salary:%f",

emp1.empid,emp1.name,emp1.age,emp1.salary);

}

Output:

GUIDED ACTIVITY – Here is the guided activity for you on
(Implementing a Structure – declaration, initialization, accessing for an
employee DB)

Accessing members
of Structure

Reading values to
members of Structure

Declaration and initialization of
Structure variable

Declaration of Structure variables

Declaration of Structure Type

Copying and Comparing Structures
We can assign a structure to another structure of the same type. For
example, if we have two structure variables stud1 and stud2 of type
struct student given as

struct student stud1 = {01, "Rahul", "BCA", 45000};

struct student stud2;

Then to assign one structure variable

to another, we will write

stud2 = stud1;

Figure

This statement initializes the members of stud2 with the values
of members of stud1. Therefore, now the values of stud1 and
stud2 can be given as shown in Fig.

C does not permit comparison of one structure variable with
another. However, individual members of one structure can be
compared with individual members of another structure. When
we compare one structure member with another structure‘s
member, the comparison will behave like any other ordinary
variable comparison.

For example, to compare the fees of two students, we will write

if(stud1.fees > stud2.fees) //to check if fees of stud1 is greater
than stud2

Note: An error will be generated if you try to compare two
structure variables.

Values of structure variables

Nested Structures – Array of Structures –
Structures and functions – Passing an entire
structure –Passing Structures Through
Pointers, Self referential structure

Topic. 5.1, 5.2, 5.3, 5.4

A structure can be placed within another structure. That is, a structure may contain
another structure as its member. Such a structure that contains another structure as
its member is called a nested structure.

Let us now see how we declare nested structures. Although it is possible to declare a nested
structure with one declaration, it is not recommended. The easier and clearer way is to declare
the structures separately and then group them in the higher level structure. When you do this,
take care to check that nesting must be done from inside out (from lowest level to the most
inclusive level), i.e., declare the innermost structure, then the next level structure, working
towards the outer (most inclusive) structure.

typedef struct {

char first_name[20];

char mid_name[20];

char last_name[20];

} NAME;

typedef struct {

int dd;

int mm;

int yy;

} DATE;

typedef struct {

int r_no;

NAME name;

char course[20];

DATE DOB;

float fees;

} student;

In this example, we see that the structure student contains two other structures, NAME and
DATE. Both these structures have their own fields. The structure NAME has three fields:
first_name, mid_name, and last_name. The structure DATE also has three fields: dd, mm, and
yy, which specify the day, month, and year of the date. Now, to assign values to the structure
fields, we will write

struct student stud1;

stud1.name.first_name = "Janak";

stud1.name.mid_name = "Raj";

stud1.name.last_name = "Thareja";

stud1.course = "BCA";

stud1.DOB.dd = 15;

stud1.DOB.mm = 09;

stud1.DOB.yy = 1990;

stud1.fees = 45000;

In case of nested structures, we use the dot operator in conjunction with the structure variables
to access the members of the innermost as well as the outermost structures.

5.1 NESTED STRUCTURES

esh ") ;

Inner
Structure

Guided activity on nested structures

#include<stdio.h>
#include<string.h>
struct date {

int day ;
int month ;
int year ;

} ;

struct person {
char name[40];
int age ;
struct date b_day ;

};

int main() {
struct person p1;

Outer

Structure

strcpy (p1.name , "S. Ram
p1. age = 32 ;
p1.b_day.day = 25 ;
p1.b_day. month = 8 ;
p1.b_day. year = 1978 ;

}

OUTPUT:

No output since there is no print statment

Accessing Inner
Structure
members

#include<stdio.h>

int main(){ struct DOB {

int day;

int month;

int year; };

struct student {

int roll_no;

char name[100];

float fees;

struct DOB date; };

struct student stud1;

printf("\n Enter the roll number : ");

scanf("%d", &stud1.roll_no);

printf("\n Enter the name : ");

scanf("%s", stud1.name);

printf("\n Enter the fees : ");

scanf("%f", &stud1.fees);

printf("\n Enter the DOB : ");

scanf("%d %d %d", &stud1.date.day, &stud1.date.month, &stud1.date.year);

printf("\n ********STUDENT‘S DETAILS *******");

printf("\n ROLL No. = %d", stud1.roll_no);

printf("\n NAME. = %s", stud1.name);

printf("\n FEES. = %f", stud1.fees);

printf("\n DOB = %d - %d - %d", stud1.date.day, stud1.date.month,

stud1.date.year);

}

OUTPUT:

Write a program to read and display information of a student using
structure within a structure

In the above examples, we have seen how to declare a structure and assign values
to its data members. Now, we will discuss how an array of structures is declared. For
this purpose, let us first analyse where we would need an array of structures.

In a class, we do not have just one student. But there may be at least 30 students.
So, the same definition of the structure can be used for all the 30 students. This
would be possible when we make an array of structures. An array of structures is
declared in the same way as we declare an array of a built-in data type.

Another example where an array of structures is desirable is in case of an
organization. An organization has a number of employees. So, defining a separate
structure for every employee is not a viable solution. So, here we can have a
common structure definition for all the employees. This can again be done by
declaring an array of structure employee.
The general syntax for declaring an array of structure can be given as,
struct struct_name struct_var[index];

Consider the given structure definition.

struct student{

int r_no;

char name[20]; char course[20]; float fees;};

A student array can be declared by writing,
struct student stud[30];

Now, to assign values to the ith student of the class, we will write,
stud[i].r_no = 09;
stud[i].name = "RASHI";
stud[i].course = "MCA";
stud[i].fees = 60000;

In order to initialize the array of structure variables at the time of declaration, we can
write as follows:

struct student stud[3] = {{01, "Aman", "BCA", 45000},{02, "Aryan", "BCA", 60000},
{03,"John", "BCA", 45000}};

© Oxford University Press 2015. All rights reserved.

5.2 Arrays Of Structures

#include<stdio.h>
int main()
{ struct student

{
int roll_no;
char name[80];
float fees;
char DOB[80];

};
struct student stud[50];
int n, i;
printf("\n Enter the number of students : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{ printf("Enter the roll number : ");

scanf("%d", &stud[i].roll_no);
printf("Enter the name : ");
scanf("%s", stud[i].name);
printf("Enter the fees : ");
scanf("%f", stud[i].fees);
printf("Enter the DOB : ");
scanf("%s", stud[i].DOB);

}
for(i=0;i<n;i++)
{ printf("\n*DETAILS OF %dth STUDENT*", i+1);

printf("\n ROLL No. = %d", stud[i].roll_no);
printf("\n NAME. = %s", stud[i].name);
printf("\n ROLL No. = %f", stud[i].fees);
printf("\n ROLL No. = %s", stud[i].DOB);

}
}

OUTPUT:
Enter the number of students : 2

Enter the roll number : 1
Enter the name : ashik
Enter the fees : 3500
Enter the DOB : 12-12-1978
Enter the roll number : 2
Enter the name : asmi
Enter the fees : 4500
Enter the DOB : 12-12-1990

DETAILS OF 1th STUDENT
ROLL No. = 1
NAME. = ashik
ROLL No. = 3500.000000
ROLL No. = 12-12-1978

DETAILS OF 2th STUDENT
ROLL No. = 2
NAME. = asmi
ROLL No. = 4500.000000
ROLL No. = 12-12-1990

...Program finished with exit code 0

Write a program to read and display
information of all the students in the class
(using Array of structure)

struct student
{

int sub[3] ;
int total ;

} ;

int main() {

struct student s[3];
int i,j;
for(i=0;i<3;i++) {

printf("\n\nEnter student %d marks:",i+1);
for(j=0;j<3;j++) {

scanf("%d",&s[i].sub[j]);
}

}

for(i=0;i<3;i++) {
s[i].total =0;
for(j=0;j<3;j++) {

s[i].total +=s[i].sub[j];
}
printf("\nTotal marks of student %d is: %d",

i+1,s[i].total);
}

}

OUTPUT:
OUTPUT:

Enter student 1 marks: 60 60 60

Enter student 2 marks: 70 70 70

Enter student 3 marks: 90 90 90

Total marks of student 1 is: 180

Total marks of student 2 is: 240

Total marks of student 3 is: 270

GUIDED ACTIVITY – Here is the activity you on (arrays and
structures)

Fig

For structures to be fully useful, we must have a mechanism to pass them to functions and
return them. A function may access the members of a structure in three ways as shown in

Passing Individual Structure Members to a Function

To pass any individual member of the structure to a function we must use the
direct selection operator to refer to the individual members for the actual
parameters. The called program does not know if the two variables are ordinary
variables or structure members.

#include<stdio.h>

typedef struct

{

int x;

int y;

}POINT;

void display(int, int);

main()

{

POINT p1 = {2, 3};

display(p1.x, p1.y);

return 0;

}

void display(int a, int b)

{

printf(" The coordinates of the point are: %d %d", a, b);

}

OUTPUT:

The coordinates of the point are: 2 3

5.3 Structure and Functions

PASSING A STRUCTURE TO A FUNCTION

When a structure is passed as an argument, it is passed

using call by value method. That is a copy of each member

of the structure is made. No doubt, this is a very inefficient

method especially when the structure is very big or the

function is called frequently. Therefore, in such a situation

passing and working with pointers may be more efficient.

The general syntax for passing a structure to a function and

returning a structure can be given as, struct struct_name

func_name(struct struct_name struct_var);

The code given below passes a structure to the function

using call-by-value method.
#include<stdio.h>

typedef struct

{

int x;

int y;

}POINT;

void display(POINT);

main()

{

POINT p1 = {2, 3};

display(p1);

return 0;

}

void display(POINT p)

{

printf(" The coordinates of the point are: %d %d", p.x, p.y);

}

OUTPUT:

The coordinates of the point are: 2 3

Guided activity on structures and functions

struct fraction {
int numerator ;
int denominator ;

};

void show (struct fraction f)
{

printf (" %d / %d ", f.numerator,
f.denominator) ;

}

int main () {
struct fraction f1 = { 7, 12 } ;
show (f1) ;

}

OUTPUT:
7 / 12

PASSING STRUCTURES THROUGH POINTERS
C allows to crerate a pointer to a structure. Like in other

cases, a pointer to a structure is never itself a
structure, but merely a variable that holds the
address of a structure. The syntax to declare a pointer
to a structure can be given as

struct struct_name
{

data_type member_name1;
data_type member_name2;
.....................................

}*ptr;
OR
struct struct_name *ptr;
For our student structure we can declare a pointer

variable by writing
struct student *ptr_stud, stud;
The next step is to assign the address of stud to the

pointer using the address operator (&). So to assign
the address, we will write

ptr_stud = &stud;
To access the members of the structure, one way is to

write
/* get the structure, then select a member */
(*ptr_stud).roll_no;
An alternative to the above statement can be used by using

‗pointing-to‘ operator (->) as shown below.
/* the roll_no in the structure ptr_stud points to */
ptr_stud->roll_no = 01;

The selection operator (->) is a single token, so do not place any
white space between them.

#include<stdio.h>
#include<string.h>
struct student
{

};
main()

int r_no;

char name[20];
char course[20];
float fees;

{ struct student stud1, *ptr_stud1;
ptr_stud1 = &stud1;
ptr_stud1->r_no = 01;
strcpy(ptr_stud1->name, "Rahul");
strcpy(ptr_stud1->course, "BCA");
ptr_stud1->fees = 45000;
printf("\n DETAILS OF STUDENT");
printf("\n -- ");

printf("\n ROLL NUMBER = %d", ptr_stud1->r_no);
printf("\n NAME =", puts(ptr_stud1->name));
printf("\n COURSE = ", puts(ptr_stud1->course));
printf("\n FEES = %f", ptr_stud1->fees);

}

OUTPUT:

DETAILS OF STUDENT

ROLL NUMBER = 1

NAME = Rahul

COURSE = BCA

FEES = 45000.000000

Write a program using pointer to structure
to initialize the members in the structure

Guided activity on Pointer to a structure

Read Product Details :

111 Pen

112 Pencil

113 Book

Print Product Details :

Product ID : 111

Name : Pen

Product ID : 112

Name : Pencil

Product ID : 113

Name : Book

Accessing structure members

through pointer :

i) Using . (dot) operator :
(*ptr) . prodid = 111 ;
strcpy ((*ptr) . Name, "Pen") ;

ii) Using - > (arrow) operator :
ptr - > prodid = 111 ;
strcpy(ptr->name , "Pencil") ;

struct product
{

int prodid;
char name[20];

};
int main()
{

struct product inventory[3];

struct product *ptr;
printf("Read Product Details : \n");

for(ptr = inventory;ptr<inventory +3;ptr++) {
scanf("%d %s", &ptr->prodid, ptr->name);

}

printf("\noutput\n");

for(ptr=inventory;ptr<inventory+3;ptr++)
{

printf("\n\nProduct ID :%5d",ptr->prodid);

printf("\nName : %s",ptr->name);
}

}

A self referential structure is one that includes at least one
member which is a pointer to the same structure type.
With self referential structures, we can create very useful
data structures such as linked -lists, trees and graphs.

Self referential structures are those structures that contain
a reference to data of its same type. That is, a self
referential structure in addition to other data contains a
pointer to a data that is of the same type as that of the
structure. For example, consider the structure node given
below.
struct node
{

int val;
struct node *next;

};

Here the structure node will contain two types of data- an
integer val and next that is a pointer to a node. You must
be wondering why do we need such a structure? Actually,
self-referential structure is the foundation of other data
structures.

5.4 SELF REFERENTIAL STRUCTURES

Self referential structures

struct student_node {
int roll_no ;
char name [25] ;
struct student_node *next ;

} ;
int main()
{
struct student_node s1 ;
struct student_node s2 = { 1111, "B.Mahesh", NULL } ;
s1. roll_no = 1234 ;

strcpy (s1.name , "P.Kiran ") ;

s1. next = & s2 ;

printf (" %s ", s1. name) ;

printf (" %s " , s1.next - > name) ;

}

OUTPUT:

Prints B.Mahesh

Prints P.Kiran

s2 node is linked to s1
node

Creating a Singly Linked List

head 150 n1-node

150

n1-node

720
n2-node

150

n1-node

720
n2-node

910
n3-node

head 150 400 910

n1-node n2-node
720

n4-node

n3-node

head 150 720 910

n1-node

400
n2-node

n4-node
n3-node

102

104 NULL

103 910

101 720

104 NULL

102 720

101 400

104 NULL

102 910

101 720

102 NULL

101 720

101 NULL

150

/* deleting n2 node */

n1->next = n4;

free(n2);

}

GUIDED ACTIVITY – Here is the activity you on (self referential
structure – foundation for linked list)

150

150

150

150

720

struct node {

int rollno; struct node *next;

};

int main() {

struct node *head,*n1,*n2,*n3,*n4;

/* creating a new node */

n1=(struct node *) malloc(sizeof(struct node));

n1->rollno=101;

n1->next = NULL;

/* referencing the first node to head pointer */

head = n1;

/* creating a new node */

n2=(struct node *)malloc(sizeof(struct node));

n2->rollno=102;

n2->next = NULL;

/* linking the second node after first node */

n1->next = n2;

/* creating a new node * /

n3=(struct node *)malloc(sizeof(struct node));

n3->rollno=104;

n3->next=NULL;

/* linking the third node after second node */

n2->next = n3;

/* creating a new node */

n4=(struct node *)malloc (sizeof (struct node));

n4->rollno=103;

n4->next=NULL;

/* inserting the new node between

second node and third node */

n2->next = n4;

n4->next = n3;

103 910

head 150

n1-node
720

n4-node
720 102

910 103 720 101 150

struct node *head=NULL;

head 150 n1-node

150

n1-node
720

n2-node

150

n1-node
720

n2-node
910

n3-node

150

 101 400 102 720

head 150 400

n1-node n2-node

400
n2-node

720

n4-node

NULL 104 910 102 720 101 150

NULL 102 720 101 150

NULL 101 150

Implementing Singly Linked List

910 103

 #include<stdio.h>
#include<stdlib.h>
struct node {

int data;
struct node *next;

};
struct node *createnode() {

struct node *new;
new = (struct node *) malloc(sizeof(struct node));
//printf("\nEnter the data : ");
//scanf("%d",&new->data);
new->data=101; //102, 104
new->next=NULL;
return new;

}
void append(struct node **h) {

struct node *new,*temp;
new = createnode();
if(*h == NULL) {

*h = new;
return;

}
temp = *h;
while(temp->next!=NULL)
temp = temp->next;
temp->next = new;

}
void display(struct node *p) {

printf("\nContents of the List : \n\n");
while(p!=NULL) {

printf("\t%d",p->data);
p = p->next; } }

int main() {
struct node *head=NULL;
append(&head);
display(head);
append(&head);
display(head);
append(&head);
display(head);
}

104 NUL
L

910
n3-
node

104 NUL
L

910
n3-
node

struct node {

int data;

struct node *next;

};

struct node *createnode() {

struct node *new;

new = (struct node *)malloc(sizeof(struct node));

printf("\nEnter the data : ");

scanf("%d",&new->data);

new->next = NULL;

return new;

}

void append(struct node **h) {

struct node *new,*temp;

new = createnode();

if(*h == NULL) {

*h = new;

return;

}

temp = *h;

while(temp->next!=NULL) temp = temp->next;

temp->next = new;

}

void display(struct node *p) {

printf("\nContents of the List : \n\n");

while(p!=NULL) {

printf("\t%d",p->data);

p = p->next; } }

int main() {

struct node *head=NULL;

int ch;

while(1) {

printf("\n1.Append");

printf("\n2.Display All");

printf("\n8.Exit program");

printf("\n\n\tEnter your choice : ");

scanf("%d",&ch);

switch(ch) {

case 1:append(&head);break;

case 2:display(head);break;

;

case 8:exit(0);break;

default :

printf("Wrong Choice, Enter correct one : ");

}

}

}

Implementing Singly Linked List

Compute the age of a person using structure
and functions (passing a structure to a
function) –Compute the number of days an
employee came late to the office by
considering his arrival time for 30 days (Use
array of structures and functions)

Topic. 5.5

5.5 Exercise programs:
Compute the age of a person using structure and

•fuCnctions (passing a structure to a function) –
Compute the number of days an employee came late to
the office by considering his arrival time for 30 days
(Use array of structures and functions)

#include <stdio.h>
struct date {
int dd, mm, yy;} ;

int date_cmp(struct date d1, struct date d2);
void date_print(struct date d);

int main(){

struct date d1 = {7, 3, 2005};

struct date d2 = {24, 10, 2005};
date_print(d1);
int cmp = date_cmp(d1, d2);
if (cmp == 0)

printf(‖ is equal to‖);
else if (cmp > 0)

printf(‖ is greater i.e. later than ―);
else printf(‖ is smaller i.e. earlier than‖);

date_print(d2);
return 0;}

/* compare given dates d1 and d2 */
int date_cmp(struct date d1, struct date d2){

if (d1.dd == d2.dd && d1.mm == d2.mm && d1.yy ==d2.yy)
return 0;

else if (d1.yy > d2.yy || d1.yy == d2.yy && d1.mm > d2.mm || d1.yy == d2.yy
&& d1.mm == d2.mm && d1.dd > d2.dd)

return 1;
else return -1;}

/* print a given date */

void date_print(struct date d) {
printf(―%d/%d/%d‖, d.dd, d.mm, d.yy);}

GUIDED ACTIVITY – Here is the activity you on (compare dates
in C)

Compute the age of a person using structure and functions (passing a structure to a function) –

Age Calculator: This program will read your date of birth and print the current age. The logic is behind
to implement this program - Program will compare given date with the current date and print how old
are you?

/*Age Calculator (C program to calculate age).*/
#include<stdio.h>
int date_diff(struct date dt1, struct date dt2);

struct date {
int day, month, year; };

int main() {

struct date dt1 = {05, 10, 2020};

struct date dt2 = {17, 05, 2004};
int cmp = date_diff(dt1, dt2);

return cmp;}

int date_diff(struct date dt1, struct date dt2){
int years,months,days;
if(dt2.year>dt1.year) {
years=0; months=0; days=0;
printf("\n I can't travel in time");}

else if(dt2.year==dt1.year){
years=0;
if(dt2.month>dt1.month){
months=0; days=0;
printf("\n I can't travel in time");}

else if(dt2.month==dt1.month){ months=0;
if(dt2.day>dt1.day){

days=0;
printf("\n I can't travel in time");}

else if(dt2.day==dt1.day){ days=0;
printf("\n Welcome to Earth");}

else

days=dt1.day-dt2.day;}
else{
months=dt1.month-dt2.month;
if(dt2.day>dt1.day) { months--;
days=30-dt2.day+dt1.day; }

else
days=dt1.day-dt2.day;} }

else {
years=dt1.year-dt2.year;
if(dt2.month>dt1.month) {
years--;

months=12-dt2.month+dt1.month;
days=30-dt2.day+dt1.day;}

else {

months=dt1.month-dt2.month;
if(dt2.day>dt1.day) {

months--;

days=30-dt2.day+dt1.day; }
else

days=dt1.day-dt2.day;} }

printf("\n Your age is %d years, %d months, %d days",years,months,days);}

Your age is 16 years, 4 months, 18 days

 GUIDED ACTIVITY – Here is the activity you on (Time in C)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>
// Print current date and time in C
int main(void){

// variables to store date and time components
int hours, minutes, seconds, day, month, year;
// time_t is arithmetic time type
time_t now;
// Obtain current time

// time() returns the current time of the system as a time_t value

time(&now);
// Convert to local time format and print to stdout
printf("Today is : %s", ctime(&now));
// localtime converts a time_t value to calendar time and
// returns a pointer to a tm structure with its members

// filled with the corresponding values

struct tm *local = localtime(&now);

hours = local->tm_hour; // get hours since midnight (0-23)

minutes = local->tm_min; // get minutes passed after the hour (0-59)

seconds = local->tm_sec; // get seconds passed after minute (0-59)

day = local->tm_mday; // get day of month (1 to 31)
month = local->tm_mon + 1; // get month of year (0 to 11)

year = local->tm_year + 1900; // get year since 1900

// print local time
if (hours < 12) // before midday

printf("Time is : %02d:%02d:%02d am\n", hours, minutes, seconds);

else // after midday

printf("Time is : %02d:%02d:%02d pm\n", hours - 12, minutes, seconds);

// print current date

printf("Date is : %02d/%02d/%d\n", day, month, year);

return 0;
}

Compute the number of days an employee came late to the office by considering his
arrival time for 30 days (Use array of structures and functions)

#include <stdio.h>

#include <time.h>

struct student{

int main(){

int n=1;

char lastName[100];

char firstName[100];

char *date;

int age;

int id;};

struct student s[n];

int x;

do{

printf("main menu :\n1.add\n2.delete\n3.diplay\n4.exit\n");

scanf("%d",&x);

switch(x){

case 1:

for(int i=0;i<n;i++){

printf("Enter first name\n");

scanf("%s",s[i].firstName);

printf("Enter last name\n");

scanf("%s",s[i].lastName);

printf("Enter your id\n");

scanf("%d",&s[i].time);

printf("Enter your age\n");

scanf("%d",&s[i].age);

time_t timer;

timer=time(NULL);

s[i].date = asctime(localtime(&timer));

//s[i].time=time(&now);

}

for(int i=0;i<n;i++){

printf("id\tfirstName\tlastName\tage\tdate\n%d\t%s\t%s\t%d\t%s",s[i].id,s[i].firstNa

me,s[i].lastName,s[i].age,s[i].date);

}

break;

case 2:

break;

case 3:

break;

case 4:

break;

default:

break;

}

printf("wrong choice");

}while(x!=4);

return 0;

}

Note: time_t t;

time(&t);

printf("\n current time is : %s",ctime(&t));

Test Yourself –5.1 to 5.6 Topics
(quiz)

1) A data structure that can store related information together is called
(a) Array (b) String (c) Structure (d) All of these
2) A data structure that can store related information of different data types
together is called
(a) Array (b) String (c) Structure (d) All of these
3) Memory for a structure is allocated at the time of
Structure definition Structure variable declaration
Structure declaration Function declaration
4) A structure member variable is generally accessed using
(a) Address operator (b) Dot operator
(c) Comma operator (d) Ternary operator
5) A structure that can be placed within another structure is known as
Self-referential structure Nested structure
Parallel structure Pointer to structure
6) A union member variable is generally accessed using the
(a) Address operator (b) Dot operator
(c) Comma operator (d) Ternary operator
7) typedef can be used with which of these data types?
(a) struct (b) union
(c) enum (d) all of these

Assignment Questions

CO 1 Develop C program solutions to simple computational

problems

1. Declare a structure that represents the following hierarchical

information.

Student

Roll Number
Name

First name
Middle Name
Last Name

Sex

Date of Birth
Day
Month
Year

Marks

English
Mathematics
Computer Science

K2 CO1

2. Define a structure date containing three integers— day, month,

and year. Write a program using functions to read data, to

validate the date entered by the user and then print the date on

the screen. For example, if you enter 29,2,2010 then that is an

invalid date as 2010 is not a leap year. Similarly 31,6,2007 is

invalid as June does not have 31 days.

K2 CO1

3. Write a program to define a union and a structure both having

exactly the same members. Using the sizeof operator, print the

size of structure variable as well as union variable and comment

on the result.

K2 CO1

Part A

1. What is Structure? Write the syntax for structure. K3 CO
3

S

2. How the members of structure object is accessed? K3 CO
3

S

3. What is a nested structure? K3 CO
3

S

4. How typedef is used in structure? K3 CO
3

A

5. What is meant by Self-referential structures? K3 CO
3

A

6. Develop a structure namely Book and create array of Book structure with
size of ten.

K2 CO
3

S

7. Invent the application of size of operator to this structure. Consider the
declaration:
struct
{
char name;
int num;
} student;

K2 CO
3

S

8. List the use of typedef. K2 CO
3

A

9. Differentiate between Structure and Array. K2 CO
3

A

10. Define the meaning of Array structure. K2 CO
3

A

Part B

1. Describe about the functions and structures. (13) K3 CO3 S

2. Explain about the structures and its operations with example
programs

K3 CO3 S

3. Explain about array of structures and nested structures with example.(13) K3 CO3 A

4. Write a C program using structures to prepare the students mark
statement. (13)

K3 CO3 A

5. Write a C program using structures to prepare the employee payroll. (13) K3 CO3 A

6. Compute the number of days an employee came late to the office by
considering his arrival time for 30 days (Use array of structures and
function)

K3 CO3 S

