CS8592 - OBJECT ORIENTED ANALYSIS
AND DESIGN

UNITV TESTING

Object Oriented Methodologies — Softwar e Quality Assurance — I mpact of
object orientation on Testing — Develop Test Cases and Test Plans.

I ntroduction.

Object oriented systems development is a way to develop software by building
self — contained modules or objects that can be easily replaced, modified and reused.
In an object-oriented environment, software is a collection of discrete objects that
encapsulate their data as well as the functionality of model real-world events
“objects” and emphasizes its cooperative philosophy by allocating tasks among the
objects of the applications. A class is an object oriented system carefully delineates
between its interface (specifications of what the class can do) and the implementation
of that interface (how the class does what it does).

A method is an implementation of an object's behavior. A model is an abstract
of a system constructed to understand the system prior to building or modifying it.
Methodology is going to be a set of methods, models and rules for developing systems
based on any set of standards. The process is defined as any operation being
performed.

510BJECT ORIENTED METHODOLOGIES

Object oriented methodologies are set of methods, models, and rules for
developing systems. M odeling can be done during any phase of the softwarelife cycle
A model is a an abstraction of a phenomenon for the purpose of understanding the
methodologies .Modeling provides means of communicating ideas which is easy to
understand the system complexity .

Object-Oriented Methodologies are widely classified into
three

1.The Rumbaugh et al. OMT (Object modeling technique)
2.The Booch methodol ogy
3.Jacobson's methodol ogies

A methodology is explained as the science of methods. A method is a set of
procedures in which a specific goal is approached step by step. Too min any
Methodol ogies have been reviewed earlier stages.

* In 1986, Booch came up with the object-oriented design concept, the Booch

method.

* In 1987,Sdly Shlagr and Steve Mellor came up with the concept of the
recursive design approach.

* In 1989, Beck and Cunningham came up with class-responsibility collaboration
(CRC) cards.

* In 1990,Wirfs-Brock, Wilkerson, and Wiener came up with responsibility
driven design.

* In 1991, Peter Coad and Ed Yourdon developed the Coad lightweight and
prototype-oriented approach. In the same year Jim Rumbaugh led a team at the
research labs of General Electric to develop the object modeling technique
(OMT).

* 1n 1994, lvar Jacobson introduced the concept of the use case.

These methodologies and many other forms of notational language provided
system designers and architects many choices but created a much split, competitive
and confusing environment. Also same basic concepts appeared in very different
notations, which caused confusion among users .Hence, a new evolvement of the
object oriented technologies which is called as second generation object-oriented
methods.

Advantages/Char ecteristics

<'he Rumbaugh et al. method is well-suited for describing the object model or static
structure of the system.

=The Jacobson et.a method is good for producing user-driven analysis models
=The Booch method detail ed object-oriented design models

Rumbaugh et. al.’s Object Modeling Technique (OMT)

<OMT describes amethod for the analysis, design, and implementation of a system
using an object-oriented technique.

=Class, attributes, methods, inheritance, and association also can be expressed easily
= The dynamic behavior of objectswithin a system can be described using OMT
Dynamic model

= Process description and consumer-producer rel ationships can expressed using
OMT’s Functional model

«OMT consists of four phases, which can be performed iteratively:

2

1. Analysis. Theresults are objects and dynamic and functional models.

2. System design. The result is a structure of the basic architecture of the system.
3. Object design. This phase produces a design document, consisting of detailed
objects and dynamic and functional models.

4. Implementation. This activity produces reusable, extendible, and robust code.

=OMT separates modeling into three differ ent parts:

1. An object model, presented by the object model and the data dictionary.
2. A dynamic model, presented by the state diagrams and event flow diagrams.
3. A functional model, presented by data flow and constraints.

OMT Object Model

=The object model describesthe structure of objectsin a system:

=Their identity , relationshipsto other objects, attributes, and operations
=The object model is represented graphically with an object diagram
=The object diagram contains classes interconnected by association lines

Client

firsthlame
lasthamea
pinCaode

GlientAccount Account Transaction

number Account Transactio "a"SD_me
halance transTime
transType

deposit
. E amount

withdraw Bal

createTransaction postBalance

A

CheckingSavingAccou,

Checking Aczcoun

Withdraw

SavinysAvuuurl

Example of an object model

* The above example provides OMT object model of a bank system. The boxes
represent classes and the filled triangle represents specialization.

» Association between Account and Transaction is one-to-many. Since one
account can have many transactions, the filled circle represents many (zero or
more).

* The relationship between Client and Account classes is one-to-one. A client
can have only one account and account can belong to only one person (in this
model joint accounts are not considered)

OMT Dynamic M odel

“©OMT dynamic model depict states, transitions, events, and actions

“©MT state transition diagramis a network of states and events

=Each state recelves one or more events, at which time it makesthe transition to the
next state.

Mo account has been selected
/f_"-\
Fa ESo.
! Y

! \ A
[] > Mothing ie sslected [ACDO:;;’;:;MCR |I

b ~ AN A

D EE———

o ‘\\ o .
|"r Haleot (hecking or)

[Select (Checkmg \l
-
V=4 wing account ! | account J

K A ML ~

b S—

{"Select transaction’| ' ™

| fype (withdraw, —— pm Enterthe amount |

\ deposit, ransfen [\ J
L S -

P _J;_ -
' A
Curifirnations |
\ !
\\H_ cam®

Example of a state transition for ATM Transaction

Here the round boxes represent states and the arrows represent transitions

OMT Functional M odel

<The OMT DFD showsthe flow of data between different processin a business
<DFD usefour primary symbols:

=Processis any function being performed ; For EX, verify password or PIN in the
ATM system

<Data flow showsthe direction of data element movement: foe Ex. PIN code
<Data storeis alocation where data are stored: for ex. Account is adatastorein the
ATM example

=External entity isasource or destination of a dataelement; fro ex. The ATM card
Reader

On the whole, the Rumbaugh et al .OMT methodol ogy provides one of the strongest
tool setsfor the analysis and design of object-oriented systems.

Data
Store

N
_/

Process

Client Account

_—
Data
Flow =

o —

Card /
Reader — PN Code—b-\P\roces FIN Code

External
Entity

Example of OMT DFD of an ATM
system

ATM card

User keyboard
entry

User screen

ATM data flow diagram
system architect

Comment ——
OMT data flow

Legend: | Process (D Datastore ___

The above exampleis OMT DFD of the ATM system .The dataflow lines
include arrows to show the direction of data element movement .The circle represents
processes. The boxes represents external entities .A data store reveal s the storage of
data.

The Booch M ethodology

<+t isawidely used object oriented method that helps us to design the system
using object paradigm.
=The Booch methodol ogy covers the analysis and design phases of systems
development.
=Booch sometimesis criticized for his large set of symbols.
=Y ou start with class and object diagram in the analysis phase and refine these
diagramsin various steps.

The Booch method consists of the following diagrams:

— Classdiagrams

— Object diagrams

— State transition diagrams
— Modulediagrams

— Processdiagrams

— Interaction diagrams

Object Modeling using Booch Notation

o

S

_ car T
1/ g
/— color P!
. manufaciurer /,f' superclass
e cost -
e
inherﬂsﬁ
s e
.~ Ford -
-
e
\—-__
. :_._i
,-/
..—o--—o;'/
_~Tustang T
g N A
C) <
] L
e o o

Example:Alarm class state transition diagram with Booch notation.The arrows
represents specialization

alarm clggs state transition diagram with Boocl
: Operator:: TurnOffAlarm
notation

. —

Enabled
Y

3 SoundAlarm
Silenced
-

(Sounding

Silence Alarm L

Enable Disable

AlarmFixed -

Disabled

The Booch methodol ogy prescribes

— A macro development process serve as a controlling framework for the micro
process and can take weeks or even months. The primary concern of the macro
processistechnical management of the system

— A micro development process.

The macro development process consists of the following steps:

1. Conceptualization :
* you establish the core requirements of the system
* You establish a set of goals and develop a prototype to prove the concept

2. Analysis and development of the model.
Use the class diagram to describe the roles and responsibilities objects are to carry out
in performing the desired behavior of the system .Also use the Object diagramto

describe the desired behavior of the system in terms of scenarios or use the interaction
diagram.

3. Design or create the system architecture.

In this phase, Y ou use the class diagram to decide what class exist and how they relate
to each other .Object diagram to used to regulate how objects collaborate. Then use
module diagram to map out where each class and object should be declared. Process
diagram — determine to which processor to all ocate a process.

4. Evolution or implementation. — refine the system through many iterations
5. Maintenance. - make localized changes the the system to add new requirements
and eliminate bugs.

Micro Development Process

Each macro development process has its own micro development process

=The micro processis a description of the day to- day activitiesby a single or small
group of

s/w developers

=The micro development process consists of the following steps:

1. Identify classes and objects.

2. ldentify class and object semantics.

3. Identify class and object relationships.

4. |dentify class and object interfaces and i mplementation.

The Jacobson et al. M ethodologies

=The Jacobson et a. methodologies (e.g., OOBE, OOSE, and Objectory) cover the
entire life cycle and stress traceability between the different phases both forward and
backward. This traceability enables reuse of analysis and design work, possibly much
bigger factorsin the reduction of development time than reuse of code.

Use Cases

=Use cases are scenarios for understanding system requirements.

<A use caseis an interaction between users and a system.

=The use-case model capturesthe goal of the user and the responsibility of the system
to itsusers.

The use case description must contain:
— How and when the use case begins and ends.

8

— The interaction between the use case and its actors, including when the interaction
occurs and what is exchanged. How and when the use case will store data in the
system.
— Exceptionsto the flow of events.
Every single use case should describe one main flow events

An exceptional or additional flow of events could be added

The exceptional use case extends another use case to include the additional one
The use-case model employs extends and uses relationships

The extends relationship is used when you have one use case that is similar to

another use case

The uses rel ationships reuse common behavior in different use cases
=Use cases could be viewed as a concrete or abstract
=Abstract use case is not complete and has no actorsthat initiate it but is used by
another use case.

=

Y

Library

f"'-— = _----H‘*-\I
(Checking out ba_ggg/

7~ Gettingan
/,_/k.llll?l']ihrag_l_qa_u.-/

-

s = _._____"-h-._,___‘

-

i -
[
—
/K e
-\-\-H-\"'-__

Member

i

(__ Doingresearch)

~_~ Reading books, ™
“~Newspapers

C}:’urcha sing Suppli@-

"
___.a-"'-
=
"

Supplier

Abstract Usecase

ATM Transaction use cases.

= o — s

-f \%\\ =< Uses > — =
@.‘k ATM transaction - DQ\I!]IF"F-'I' ||n-:'c-<-1'-\)
% P
I e
=

= =

<< extends »> ;’:- <= extends == \ << extends >
\ << extends >= ’
4 i

-/ _,.-"-_d_'. “hiee I'\':l:lt'_—_-\""‘*-. £l | e

] . TR transaction history Inwvalid PIN
e > >

CLOr >3

\\

N B f!__.-a- e e
(transaction history i\‘-__]]‘.i“ Sil Arnount /'} ('\Mﬂh-ir.m .'.|1]g'lll:;\)
o S i — e ST o

—

Object-Oriented Software Engineering: Objectory

* Object-oriented software engineering (OOSE), aso called Objectory, is a
method of object oriented development with the specific am to fit the
development of large, real-time systems. The development process, called use-
case driven development, stresses that use cases are involved in severa phases
of the development.

* The system development method based on OOSE is a disciplined process for
the industrialized development of software, based on a use-case driven design.
It is an approach to object-oriented analysis and design that centers on
understanding the ways in which a system actually is used.

* By organizing the analysis and design models around sequences of user
interaction and actual usage scenarios, the method produces systems that are
both more usable and more robust, adapting more easily to changing usage

* The maintenance of each model is specified in its associated process. A process
Is created when the first development project starts and is terminated when the
developed system is taken out of service

Objectory is built around several different models:
— Usecase moddl.
— definesthe outside (actors) and inside(use case) of the system behavior

10

— Domain object model. The object of the “real” world are mapped into
the domain object model
— Analysisobject model.
— how the source code (implementation) should be carried out and written
— Implementation model.
— representsthe implementation of the system
— Test model.
- constitute the test plan, specifications, and reports

Use-case model

— —
gy

Realibed by sted in

Structyred by Implenrented by

I:I OK
C0 0| Fe3C 2P| | (AP || oo

Domain Object Amnalysis Design modelImplementation Testing model
model model model

Object-Oriented Business Engineering (OOBE)

Object-oriented business engineering (OOBE) is object modeling at the enterprise
level. Use cases again are the central vehicle for modeling, providing traceability
throughout the software engineering processes.

OOBE consists of : object modeling at enterprises|evel
— Analysis phase
* The anaysis phase defines the system to be built in terms of the problem-
domain object model, the requirements model and the analysis model .This
reduces complexity and promotes maintainability over the life of the system
,since the description of the system will be independent of hardware and
software requirements.
» The analysis process is iterative but the requirements and the analysis models
should be stable before moving on to subsequent models. Jacobson et al.

11

suggest that prototyping with a tool might be useful during this phase to help
specify user interfaces.
— Design& Implementation phases
* The implementation environment must be identified for the design model .
This include factors such as DBMS, distribution of process ,constraints due to
the programming language, available component libraries and incorporation
user interfacetools
* It may be possible to identify implementation environment concurrently with
anaysis. The analysis objectsthat fit the current implementation environment.
— Testing phase.
Finally Jacobson describes several testing levels and techniques such as unit
testing, integration testing and system testing.

Patterns

A design pattern is defined as that it identifies the key aspects of a common
design sturture that make it useful for creating a reusable object-orinted design . It also
identifies the participating classes and instances their roles and collaborations and the
distribution of responsihilities.[Gamma,Helson,Johnson definition |

A pattern involves a general description of solution to a recurring problem
bundle with various goals and constraints. But a pattern does more than just identify a
solution; it also explainswhy the solution is needed.
=A pattern is useful information that captures the essential structure and insight of a
successful family of proven solutions to a recurring problem that arises within a
certain context and system of forces.
=|ts help software developers resolve commonly encountered, difficult problems and
a vocabulary for communicating insight and experience about these problems and
their solutions.

The main idea behind using patterns is to provide documentation to help categorize
and communicate about solutions to recurring problems.

=The pattern has a name to facilitate discussion and the information it represents.

A good pattern will do the following:
=|t solves a problem.
Patterns capture solutions, not just abstract principles or strategies.
=t is aproven concept.
Patterns capture solutions with a track record, not theories or speculation.
=The solutionis not obvious.

12

The best patterns generate a solution to a problem indirectl y—anecessary approach
for the most difficult problems of design.
=|t describes arelationship.

Patterns do not just describe modules, but describe deeper system structures and
mechanisms.

Generative and Non-Generative Patterns
* Generative patterns are the patterns that not only describe a recurring problem
but also tell us how to generate something and can be observed in the resulting
system architectures.
* Non-generative patterns are static and passive .They describe recurring
phenomenawithout necessarily saying how to reproduce them.

Patterns Template

Every pattern must be expressed in form of a template which establishes a
relationship between a context , a system of forces which raises in that context and a
configuration which allows these forces to resolve themselves in that context. The
following components should be present in a pattern template

* Name —A meaningful name .This allows us to use a singlew word or short
phrase to refer a pattern and the knowledge and the structure it
describes.Sometimes a pattern may have more than one commonly used or
recognizable name in the literature .In this case nick names can be used .

* Problem-A statement of a problem that describes its intent: the goals and
objectivesit wants to reach within the given context and forces.

» Context-The preconditions under which the problem and its solution seem to
recur and for which solution is desirable. This tells us about the pattern
applicability.

» ForcessA description of the relevant forces and constraints and how they
interact or conflict with one another and with goals to that wish to achieve.
Forces revea the intricacies of the problem and define the kinds of trade-offs
that must be considered in the presences of the tension or dissonance they
create. A good pattern description should fully encapsulate all the forces that
have an impact on it.

» Solution

13

* Solution. Static relationships and dynamic rules describing how to realize the de-
gired outcome. This often is equivalent to giving instructions that describe how
to construct the necessary products. The description may encompass pictures, di-
agrams, and prose that identify the pattern’s structure, its participants, and their
collaborations, to show how the problem is solved. The solution should describe
not only the static structure but also dynamic behavior. The static structure tells
us the form and organization of the pattern, but often the behavioral dynamics
is what makes the pattern “come alive.” The description of the pattern’s solution
may indicate guidelines to keep in mind (as well as pitfalls to avoid) when at-
tempting a concrete implementation of the solution. Sometimes, possible varn-
ants or specializations of the solution are described as well.

Examples
* Examples. One or more sample applications of the pattern that illustrate a spe-

cific initial context; how the pattern is applied to and transforms that context;
and the resulting context left in its wake. Examples help the reader understand
the pattern’s use and applicability. Visual examples and analogies often can be
very useful. An example may be supplemented by a sample implementation o
show one way the solution might be realized. Easy-to-comprehend examples
from known systems usually are preferred.

Resulting context
* Resulting context. The state or configuration of the system after the pattern has

been applied, including the consequences (both good and bad) of applying the
pattern, and other problems and patterns that may arise from the new context. [t
describes the postconditions and side effects of the pattern. This is sometimes
called a resolution of forces because it describes which forces have been re-
solved, which ones remain unresolved, and which patterns may now be applic-
able. Documenting the resulting context produced by one pattern helps you cor-
relate it with the initial context of other patterns (a single pattern often is just
one step toward accomplishing some larger task or project).

Rationale
* Rationale. A justifying explanation of steps or rules in the pattern and also of the

pattern as a whole in terms of how and why it resolves its forces in a particular
way to be in alignment with desired goals, principles, and philosophies. It explains
how the forces and constraints are orchestrated in concert to achieve a resonant
harmony. This tells us how the pattern actually works, why it works, and why it is
“good.” The solution component of a pattern may describe the outwardly visible
structure and behavior of the pattern, but the rationale is what provides insight into
the deep structures and key mechanisms going on beneath the surface of the system.

Related Patterns
* Related patterns. The static and dynamic relationships between this pattern and

others within the same pattern language or system. Related patterns often share
common forces. They also frequently have an initial or resulting context that is
compatible with the resulting or initial context of another pattern. Such patterns
might be predecessor patterns whose application leads to this pattern, successor
patterns whose application follows from this pattern, alternative patterns that de-
scribe a different solution to the same problem but under different forces and
constraints, and codependent patterns that may (or must) be applied simultane-
ously with this patiern.

14

* Known uses-The known occurrences of the pattern and its application within
existing systems .This helps validate a pattern by verifying that it indeed is a
proven solution to arecurring problem.

AntiPatterns

<A pattern represents a “best practice” whereas an antipattern represents “worst
practice” or a

“lesson leaned”

<Antipattern come in two verities:

=T hose describe a bad solution to a problem that resulted in a bad situation

=Those describing how to get out of a bad situation and how to proceed from thereto
agood solution

<[he pattern has a significant human component.
- All software serves human comfort or quality of life.
-The best patterns explicitly appeal to aestheticsand utility.

Capturing Patterns

» Patterns should provide not only facts but also tell us a story that capturesthe

experience they are trying to convey.
» A pattern should help its users comprehend existing systems, customize
systemsto fit user needs, and construct new systems.

» The process of looking for patternsto document is called pattern mining.
=Guidelinesfor capturing patterns:
— Focus on practicability.-Patterns should describe proven solutuions to recurring
problems rather than the latest scientific results.
— Aggressive disregard of originality.-Pattern writers do not need to be the original
inventor or discoverer of the solutionsthat they document.
— Non-anonymous review.-Paper submissions are shepherded rather than reviewed. It
contacts the pattern authors and discusses with him or her how the patterns might be
clarified or improved on
— Writers workshops instead of presentations.-Open forums are used here to improve
the patterns which are lacking
— Careful editing
.-Incorporating all the review comments and insights given by the writers workshops.
Frameworks
<A framework isaway of presenting a generic solution to a problem that can be
appliedto all
levelsin a development.

15

<A singleframework typically encompasses severa design patterns and can be viewed
asthe

implementation of a system of design patterns.

A definition of object oriented software framework is given by Gammaet al.

A framework is a set of cooperating classes that make up a reusable design for a spe-
cific class of software. A framework provides architectural guidance by panitioning the
design into abstract classes and defining their responsibilities and collaborations. A de-
veloper customizes a framework 1o a paruicular application by subclassing and compos-
ing instances of framework classes. The framework captures the design decisions that
are common to its application domain. Frameworks thus emphasize design reuse over
code reuse, though a framework will usually include concrete subclasses you can put 10
work immediately.

Differences between Design Patterns and Frameworks

=Design patterns are more abstract than frameworks.
=Design patterns are smaller architectural elementsthan frameworks.
=Design patterns are less specialized than frameworks.

The Unified Approach

=Theidea behind the UA is not to introduce yet another methodology.
=The main motivation here is to combine the best practices, processes, methodologies,
and guidelinesalong with UML notations and diagrams.

o Develop Use- Develop Identify classes
oo © i = & Refine
| CASES, activity €| interaction) o relationships,
m - diagrams diagrams attributes & ;::'Iate
Idenﬂf!:ﬂm"s prototyping methods I
Construction | O-O Analysis
Component % Layered
Based Repository Approach
Development of use-cases,
analysis,
Continuoug design, UL
Testing and past
Experiences
A 4 Patterns
T = DO D e om— UML Based
User satisfaction s N
usability tests, & Traceability Modeling
quality assurancg
est O-0O Design
Design classes, o || Apply Design Designv vievik T - i
their attributes. [~ A¥ioms —* mdnces B R
methods. : =z Lavers and ; 0
Ssseca o I dBizz!l:riaIr;:_vﬁ_ clas: ot — [based on use cases
srrucnge 24 o] Cont s Cesibacy I

16

The unified approach to software development revolves around (but is not limited to)
the following processes and components.

The processes are:

— Use-case driven devel opment.

— Object-oriented analysis.

— Object-oriented design.

— Incremental development and prototyping.
— Continuous testing.

UA Methods and Technology

=The methods and technol ogy employed includes:

— Unified modeling language (UML) used for modeling.

— Layered approach.

— Repository for object-oriented system devel opment patterns and frameworks.
— Promoting Component-based devel opment.

UA Object-Oriented Analysis:

Use-Case Driven

=The use-case model capturesthe user requirements.

=The objects found during analysis lead us to model the classes.

=The interaction between objects provide a map for the design phase to model the
relationships and designing classes.

OOA Process consists of the following steps:

1. Identify the Actors

2. Develop the simple business process model using UML activity diagram
3. Develop the Use Case

4. Develop interaction diagrams

5. Identify classes

UA Object-Oriented Design:

=Booch provides the most comprehensive object-oriented design method.

=However, Booch methods can be somewhat imposing to learn and especially tricky
to figure out where to start.

<UA readlizesthis by combining Jacobson et al.'s anal ysis with Booch's design concept
to create a comprehensive design process.

17

OOD Process consists of :

= Design classes, their attributes, methods, associations, structures and protocols,
apply design axioms

=Design the Access Layer

=Design and prototype User Interface

=User satisfaction and usability Test based on the usage/ Use cases

| terative Devel opment and Continuous Testing

<'he UA encouragesthe integration of testing plansfrom day 1 of the project.
=Usage scenarios or Use Cases can become test scenarios; therefore, use cases will
drive the usability testing.

=Y ou must iterate and reiterate until, you are satisfied with the system.

Modeling Based on the Unified Modeling Language

= The UA uses the unified modeling language (UML) to describe and model the
analysis and design phases of system devel opment.

The UA Proposed Repository

=The requirement, analysis, design, and i mplementation documents should be stored
in the repository, so reports can be run on them for traceability.

=Thisallows us to produce designsthat are traceable across requirements, analysis,
design, implementation, and testing.

Two-Layer Architecture

In atwo-layer system, user interface screens are tied directly to the data through
routinesthat sit directly behind the screens.

18

This approach resultsin objectsthat are very specialized and cannot be reused easily
in other projects.

Three-Layer Architecture

=Y our objects are completely independent of how:
— they are represented to the user (through an interface) or
— how they are physically stored.

User Interfacelayer

This layer consists of objects with which the user interacts as well as the objects
needed to manage or control the interface. It is also called as a view layer. The Ul
interface layer objects are indentified during OOD phase..

Thislayer istypically responsiblefor two major aspects of the applications:

= Responding to user interaction-Here the user interface layer objects must be
designed to trandate actions by the user , such as clicking on a button or selecting
from a menu ,into an appropriate response .

That response may be to open or close another interface or to send a message down
into the businesslayer to start some business process.

=Displaying business objects.-The display of the objectsis shown by using list boxes
and graphs

Business L ayer

1.Theresponsibilities of the business layer are very straightforward:

2.model the objects of the business and how they interact to accomplish the business
processes.

19

BusinessL ayer: Real Objects

These objects should not be responsiblefor:

= Displaying details. Business objects should have no special knowledge of how
they are being displayed and by whom. They are designed to be independent of
any particular interface, so the details of how to display an object should exist
in the interface (view) layer of the object displaying it.

* Dara access details. Business objects also should have no special knowledge of
“where they come from.” It does not matter to the business model whether the

data are stored and retrieved via SQL or file I/O. The business objects need to
know only to whom to talk about being stored or retrieved. The business objects

are modeled during the object-oriented analysis.

AccessLayer

=The access layer contains objects that know how to communicate with the place
where the data actually resides,
<%\/hether it be arelational database, mainframe, Internet, or file.

=The access layer has two major responsibilities:
=Trandate request-This layer must be able to trandate any data-related requests from

the business layer into the appropriate protocol for data access.(For eg . if a customer
number 5333 is to be retrieved from the Database , an SQL statement is created by the

access layer and executeit)
=Trandate result —It trandates the data retrieved back into the appropriate business

objects and passes those objects back up into the business layer

Architecturefor Accesslayer ,.Businesslayer and view layer

F:""‘l =
s — — A ccess
= g Laver
o
35¥
A

Business
Layer

@ @®

COA

&OPO? tOOD
rooypllg. <
D 0
0
<O
w0
e

<k

20

52 SOFTWARE QUALITY ASSURANCE

The major key areas of SQA are
» Bugsand Debugging
» Testing strategies.
» Theimpact of an object orientation on testing.
* How to develop test cases.
* How to develop test plans.
Two issuesin software quality are:
« Validation or user satisfaction
» Vaerification or quality assurance.

Elimination of the syntactical bug is the process of debugging. Detection and
elimination of the logical bug isthe process of testing.
Error Types.
<+ anguage errors or syntax errors
<Run-time errors
<+ ogic errors

I dentifying Bugs and Debugging

< hefirst step in debugging is recognizing that a bug exists.

<ometimesit's obvious; the first time you run the application, it showsitself.
<©ther bugs might not surface until a method receives a certain value, or until you
take a closer look at the output

However, these steps might help:
» Selecting appropriate testing strategies
» Developing test cases and sound test plan.

Debugging Tools

<®ebugging tools are away of looking inside the program to help us determine what
happens and why.

<+t basically gives us a snapshot of the current state of the program.

Testing Strategies

There are four types of testing strategies, These are:
1 Black Box Testing
1 White Box Testing
1 Top-down Testing

21

] Bottom-up Testing
Black Box Testing

<+n a black box, the test item is treated as "black™ whose logic is unknown.
<All that's known iswhat goesin and what comes out, the input and output
<Black box test works very nicely in testing objectsin an Object-Oriented
environment.

Irwputw

WhiteBox Testing

White box testing assumes that specific logic is important, and must be tested
to guarantee system’s proper functioning. This testing looks for bugs that have a low
probability of execution that has been overlooked in previous investigations. The main
use of this testing is error-based testing , when all level based objects are tested
carefully .

IHQULQ e E Output
-~

One form of white box testing is called path testing
<+t makes certain that each path in a program is executed at |east once during testing.

Two types of path testing are:

» Statement testing coverage- The main idea of the statement testing coverageis
test every statement in the objects method executing it at |east once.

22

» Branch testing coverage —The main idea here is to perform enough tests to
ensure that every branch alternative has been executed at least once under some
test. It isfeasibleto fully test any program of considerable size.

Top-down Testing

It assumes that the main logic of the application needs more testing than supporting
logic.

Bottom-up Approach

<+t takes an opposite approach.

<+t assumes that individual programs and modules are fully developed as standalone
processes.

< hese modules are tested individually, and then combined for integration testing.

System Usability & Measuring User Satisfaction
</ erification
- "Am | building the product right?"

Validation
- "Am | building the right product?"

Two main issues in software quality are
Validation or user satisfaction and
verification or quality assurance.

< he process of designing view layer classes consists of the following steps:
1. Inthe macro-level user interface (Ul) design process, identify view layer objects.

2. Inthe micro-level Ul, apply design rules and GUI guidelines.
3. Test usability and user satisfaction.
4. Refine and iterate the design.

Usability and User Satisfaction Testing

Two issueswill be discussed:

1. Usability Testing and how to develop a plan for usability testing.

2.User Satisfaction Test and guidelines for developing a plan for user satisfaction
testing.

<[he International Organization for Standardization (1SO) defines usability as the
effectiveness ,efficiency, and satisfaction with which a specified set of users can
achieve a specified set of tasksin particular environments.

=Defining tasks. What are the tasks?

23

<Defining users. Who are the users?

<A means for measuring effectiveness, efficiency, and satisfaction

The phrase two sides of the same coinis helpful for describing the relationship
between the

Usability and functionality of a system.

Bottom — Up Testing

It supports testing user interface and system integration. In the bottom-up strategy,
each module at lower levels is tested with higher modules until all modules are tested.
It takes help of Driversfor testing

Module
1

Module
3
[

Bgttgm |

Advantages:
» Fault localizationis easier.
* Notimeiswasted waiting for al modulesto be developed unlike Big-bang
approach
Disadvantages:
» Critical modules (at the top level of software architecture) which control the
flow of application are tested last and may be prone to defects.
* Anearly prototypeis not possible

Top-down Testing:
In Top to down approach, testing takes place from top to down following the control
flow of the software system. Takes help of stubsfor testing. It starts with the details of

the system and proceeds to higher levels by a progressive aggregation of details until
they fit requirements of system.

24

== 1|
Top Down |

) []

Module Module

2 3

1 : | l
Module
4

Advantages:

» Fault Localizationis easier.

» Possibility to obtain an early prototype.

» Critical Modules are tested on priority; maor design flaws could be found and
fixed first.

Module
6

Disadvantages:
* Needs many Stubs.
* Modulesat alower level are tested inadequately.

53 IMPACT OF OBJECT ORIENTATIONON TESTING

Errors.
Less Plausible (not worth testing for)
More Plausible (worth testing for now)
New types of errors may appear

Impact of Inheritanceon Testing.

» Does not reduce the volume of test cases

» Rather, number of interactionsto be verified goes up at each level of the
hierarchy

» Testing approachis essentialy the same for OO oriented and Non-Object
oriented environment.

* However, can reuse superclass/base classtest cases

» Since OO methods are generally smaller, these are easier to test . But there are
more opportunitiesfor integration faults.

25

Reusability of tests.

Reusable Test Cases and Test Steps is a tool to improve re-usability and
maintainability of Test Management by reducing redundancy between Test Cases in
projects. Often the Test scenarios require that some Test Cases and Test Steps contain
repeated or similar actions performed during a Testing cycle.

The models used for analysis and design should be used for testing at the same
time. The class diagram describes relationship between objects .which is a useful
information form testing .Also it shows the inheritance structure which is important
information for error-based testing.

Error based testing

Error based testing techniques search a given class’s method for particular clues of
interests, and then describe how these clues should be tested.

Usability testing

Measuresthe ease of use as well as the degree of comfort and sati sfaction users have
with the software.

<Jsability testing must begin with defining the target audience and test goals.

<Run a pilot test to work out the bugs of the tasksto be tested.

<+ ake certain the task scenarios, prototype, and test equipment work smoothly.

Guidelinesfor Developing Usability Testing
—TFocus groups' are helpful for generating initial ideas or trying out new ideas.
It requires a moderator who directs the discussion about aspects of atask or design

<“Apply usability testing early and often.

<+ncludeall of software‘s componentsin the test.

< he testing doesn‘t need to be very expensive, a tape recorder, stopwatch, notepad
and an office can produce excellent results.

<[ests need not involve many subjects.

Moretypicaly, quick, iterative tests with a small, well-targeted sample of 6 to 10
participants can identify 80— 90 percent of most design problems.

<-ocus on tasks, not features.

<Remember that your customerswill use features within the context of particular
tasks.

<+ ake participantsfeel comfortable by explaining the testing process.

<+mphasize that you are testing the software, not the participants.

26

<+f they become confused or frustrated, it is not a reflection on them.

)0 not interrupt participants during a test.

<+f they need help, begin with general hints before moving to specific advice.

<« eep in mind that less intervention usually yields better results.

<Record the test results using a portabl e tape recorder, or better, a video camera.

</ ou may also want to follow up the session with the user satisfaction test.

<[he test is inexpensive, easy to use and it is educational to those who administrate it
and those who fill it out. Even if the results may never be summarized, or filled out,
the process of creating the test itself will provide us with useful information.

54 TEST CASES

A test caseisaset of What — if questions. To test a system you must construct some
best input cases, that describe how the output will look. Next, perform the tests and
comparethe

outcome with the expected output.

Myer’s (objective of testing)

Testing is a process of executing a program with the intent of finding errors.

Good test case.That has a high probability of finding an as— yet — undiscovered error.
Successful test case That detects an as — yet — undiscovered error.

Specifying results is crucial in developing test cases. You should test cases that
are supposed to fail. During such tests, it is a good idea to alert the person run-
ning them that failure is expected. Say, we are testing a File Open feature. We need
to specify the result as follows:

1. Drop down the File menu and select Open.
2. Try opening the following types of files:
= A file that is there (should work).
A file that is not there (should get an Error message).
A file name with intemational characters (should work).
A file type that the program does not open (should get a message or conver-
sion dialog box).

" & @

Guidelinesfor Developing quality assurancetest cases.

Freedman and Thomas have devel oped guidelinesthat have been adopted for the UA:

Describe which feature or service your test attemptsto cover.
If the test case is based on a use case, it isgood ideato refer to the use-case
name.
Specify what you are testing and which particular feature.
test the normal use of the object methods.

27

* test the abnormal but reasonable use of the objects methods.

* test the boundary conditions.

» Test objectsinteractions and the messages sent among them.

» Attempting to reach agreement on answers generally will raise other what-if
guestions.

* Theinterna quality of the software, such asits reusability and extensibility,
should be assessed as well.

55TEST PLAN

A Test plan is developed to detect and identify potential problems before delivering
the
softwareto its users.

A test plan offers aroad map.

A dreaded and frequently overlooked activity in software development.

Steps
» Objectivesof thetest.- create the objectives and describes how to achievethem
» Development of atest case- develop test case, both input and expected output.
* Test analysis.- This step involves the examination of the test output and the
documentationsof the test results

Regression Testing.- All passed tests should be repeated with the revised program,
called "Regression". This can discover errors introduced during the debugging
process. When sufficient testing is believed to have been conducted, this fact should
be reported, and testing to this specific product is complete

Beta Testing.

Beta Testing can be defined as the second stage of testing any product before
release where a sample of the released product with minimum features and
characteristics is being given to the intended audience for trying out or temporarily
using the product.

Unlike an alpha test, the beta test is being carried out by real users in the real
environment. This alows the targeted customers to dive into the product's design,
working, interface, functionality, etc.

Alpha Testing.

Alpha Testing can be defined as a form of acceptance testing which is carried
out for identifying various types of issues or bugs before publishing the build or
executable of software public or market. This test type focuses on the real users

28

through black box and white box testing techniques. The focus remains on the task
which a general user might want or experience.

Alphatesting any product is done when product development is on the verge of

completion. Slight changes in design can be made after conducting the alpha test. This
testing methodology is performed in lab surroundings by the developers.

Here developers see things in the software from users point and try to detect the
problems. These testers are internal company or organization's employees or may be a

part

of the testing team. Alpha testing is done early at the end of software

development before beta testing.
Guidelines(for preparingtest plan)

Specify Requirements generated by user.
Specify Schedule and resources.
Determinethe testing strategy.
Configuration Control System.

Keep the plan up to date.

At the end of each milestone, fill routine updates.

You may have requirements that dictate a specific appearance or format for your
test plan. These requirements may be generated by the users. Whatever the ap-
pearance of your test plan, try to include as much detail as possible about the tests.
The test plan should contain a schedule and a list of required resources. List how
many people will be needed, when the testing will be done, and what equipment
will be required.

After you have determined what types of testing are necessary (such as black
box, white box. top-down, or bottom-up testing), you need to document specif-
ically what you are going to do. Document every type of test you plan to com-
plete. The level of detail in your plan may be driven by several factors, such as
the following: How much test time do you have? Will you use the test plan as a
training tool for newer team members?

A configuration control system provides a way of tracking the changes to the
code. At a minimum, every time the code changes, a record should be kept that
tracks which module has been changed, who changed it, and when it was altered,
with a comment about why the change was made, Without configuration con-
trol, you may have difficulty keeping the testng in line with the changes, since
frequent changes may occur without being communicated to the testers.

A owell-thought-out design tends to produce better code and result in more com-
plete testing, so it is a good idea to try to keep the plan up to date. Generally,
the older a plan gets, the less useful it becomes. If a test plan is so old that it
has become part of the fossil record, it is not terribly useful. As you approach
the end of a project, you will have less time to create plans. If you do not take
the time to document the work that needs to be done, you risk forgetting some-
thing in the mad dash to the finish line. Try to develop a habit of routinely bring-
ing the test plan in sync with the product or product specification.

At the end of each month or as you reach each milestone, take time to complete
routine updates. This will help you avoid being overwhelmed by being so out-
of-date that you need to rewrite the whole plan. Keep configuration information
on your plan, too. Notes about who made which updates and when can be very
helpful down the road.

29

MYER’S DEBUGGING PRINCIPLES

Bug locating principles.
(1 Think

1 1f you reach an impasse, sleep onit.
O If the impasse remains, describe the problem to someone else. Use debugging

tools.

1 Experimentation should be done as a last resort.

Debugging principles.

1 Wherethereisonebug, thereislikely to be another.
(1 Fix the error, not just the symptom.

1 The probability of solution being correct drops down as the size increases.
1 Bewareof error correction, it may create new errors

Casestudy :

Develping Test casesfor vianet ATM bank system

Test cases are derived from the following use case scenarios

1. Bank Transaction

2. Checking transaction history

3. Savings/current account

4. Deposit/Withdarw
5. vaid/invalid PIN

Is casy 1o operate:

How do you rate the ViaNet bank ATM kiosk interface?

i 9 B 7 6 5 4

vors [LT T T T T LT T v

Mo Fun

Mot Pleasing

Mot an All

Buttons are right size and easily
can be located: Very Approprizie]

0 2 B 7 & 5 4 2 I
Is efficient to use: Very Efficient I I

0 @ 8 7 6 5 4 2 1
Is fum to use: Fun

I 9 B T 6 § 4 2 I
Is visually pleasing: Very Fleasing

o 9] T] 5 4 2 1

. Very Easy

Provides easy recovery from ermors: Receresy I

Example of vianet ATM system for user satisfaction test

30

